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Abstract

In Latent Semantic Analysis (LSA) the meaning of a word is represented as a vector in a
high-dimensional semantic space. Different meanings of a word or different senses of a
word are not distinguished.   Instead, word senses are appropriately modified as the word
is used in different contexts. In N-VP sentences, the precise meaning of the verb phrase
depends on the noun it is combined with. An algorithm is described to adjust the meaning
of a predicate as it is applied to different arguments. In forming a sentence meaning, not
all features of a predicate are combined with the features of the argument, but only those
that are appropriate to the argument. Hence, a different “sense” of a predicate emerges
every time it is used in a different context. This predication algorithm is explored in the
context of four different semantic problems: metaphor interpretation, causal inferences,
similarity judgments, and homonym disambiguation.
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Most words in most languages can be used in several different ways so that their
meaning is subtly or not so subtly modified by their context. Dictionaries, therefore,
distinguish multiple senses of a word. Each sense of a word is typically illustrated with an
example. To demonstrate the diversity of word senses, consider this selection form
Webster's Collegiate Dictionary from the 30 senses listed for the verb run (intransitive):

the horse runs
the ship runs before the wind
the cat ran away
the salmon run every year
my horse ran last
the bus runs between Chicago and New York
a breeze ran through the trees
a vine runs over the porch
the machine is running
the colors run
blood runs in the veins
the ship ran aground
the apples run large this year.

The meaning of the predicate run is different in each of these examples: the horse runs in
a different way than the machine or the colors - and run away and run aground are
different yet, although all of these uses of run have a core meaning in common. The exact
meaning of a predicate depends on the argument it operates upon. Predication creates
new meanings in every context by combining the meaning of the argument and
appropriately selected aspects of the meaning of the predicate. It is not the whole
meaning of run that applies to the vines running over the porch, or the blood running in
the veins, but only features1 that are relevant to the argument of the predication.

Multiple senses are by no means rare, especially for verbs (hundreds of senses for
semantically impoverished verbs like give and take have been distinguished).
Dictionaries, however, don't really claim to be exhaustive in their listing of word senses.
However, George A. Miller and his colleagues, with WordNet, have made an explicit
attempt to catalogue word senses for use in linguistic and psychological research, as well
as for artificial intelligence applications (Miller, 1996; Fellbaum, 1998). WordNet
includes over 160,000 words and over 300,000 relations among them. For instance, the
verb run has 42 senses in WordNet; in addition, 11 senses are listed for the noun run.
Thus, WordNet is an extremely ambitious enterprise, hand-crafted with great care. To
develop a word net for the entire English language is, however, also an extraordinarily
difficult task, for not only can there be no guarantee that even the most dedicated
lexicographer has not missed a sense of a word or some relation between words that may
suddenly become relevant, but language change assures that new and unforeseeable word
uses will forever develop. At best, such a system must remain open and continuously
subject to modification.
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The proposal made here is very different: there is no need to distinguish between
the different senses of a word in a lexicon, and particularly the mental lexicon.  The core
meaning of each word in a language is well defined, but is modified in each context.
Word senses emerge when words are used in certain special, typical contexts. Indeed,
every context generates its own word sense. The differences between the contextual
meanings of a word may be small or large, but they are always present. The
decontextualized word meaning is nothing but an abstraction, though a very useful one.
Specifically, in predication the meaning of the predicate is influenced by the argument of
the predication.

A claim like this is of course empty unless one can specify precisely how a word
meaning is defined and how it is contextually modified to give rise to various senses.
Recent developments in statistical semantics have made this possible. Latent Semantic
Analysis (LSA) allows us to define the meaning of words as a vector in a high-
dimensional semantic space. A context-sensitive composition algorithm for combining
word vectors to represent the meaning of simple sentences expressing predication will be
described below

Lexical semantics is a diverse field. Hand-coding word meanings, as in WordNet
(Miller, 1996), or hand-coding a complete lexical knowledge base, as in the CYC project
(Lenat & Guha, 1990), has been the traditional approach. It is a valuable approach, but
limited, both theoretically and practically. A catalogue is not a theory of meaning, and
most cognitive scientists are agreed that to intuit meanings with any precision is a most
difficult if not impossible task, but many don’t care, because “the rough approximation
(provided by a dictionary definition) suffices, because the basic principles of word
meaning, (whatever they are), are known to the dictionary user, as they are to the
language learner, independently of any instruction and experience.“ (Chomsky, 1987;
21).

The alternative to listing meanings is a generative lexicon in which word senses
are not fixed but are generated  in context from a set of core meanings. Approaches differ
widely, however, as to what these core meanings are, how they are to be determined, and
about the generation process itself.  A long-standing tradition, with roots in the practice
of logicians, seeks to generate complex semantic concepts from a set of atomic elements,
much as chemical substances are made up of the chemical elements (Katz, 1972; Schank,
1975). A recent example is the work of Wierzbicka (1996), where word meanings are
defined in terms of a small set of semantic primitives in a semantic metalanguage that
rigorously specifies all concepts. Natural languages are interpreted with respect to that
semantic metalanguage.

Alternatively, structural relations rather than elements may be considered the
primitives of a semantic system. An early example of such a system (Collins & Quillian,
1969) was constructed around the IS-A relationship. A notable contemporary example of
a generative lexicon of this type is Pustejovsky (1996). Pustejovsky employs a number of
primitive semantic structures and develops a context sensitive system of symbolic rules
focused on the mesh between semantic structure and the underlying syntactic form.
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LSA contrasts starkly with semantic systems built on primitives of any kind, both
logic- and syntax-based approaches. In the tradition of Wittgenstein (1953), it is  claimed
that word meanings are not to be defined, but can only be characterized by their “family
resemblance.” LSA attempts to provide a computational underpinning for Wittgenstein’s
claim: it derives the family resemblance from the way words are used in a discourse
context, using machine learning, neural-net like techniques. The advantage of LSA is that
it is a fully automatic, corpus based statistical procedure that does not require syntactic
analysis. In consequence, however, LSA does not account for syntactic phenomena,
either; the present paper shows how this neglect of syntax can be remedied, at least in a
small way, with respect to simple predication.

In the present paper, LSA will be introduced first. Then, the predication algorithm
will be discussed. Finally, a number of applications of that algorithm will be described to
demonstrate that it actually performs in the way it is supposed to perform for a few
important semantic problems: metaphor interpretation, causal inference, similarity
judgments, and homonym disambiguation.

LSA: Vectors in Semantic Space

LSA is a mathematical technique that generates a high-dimensional semantic
space from the analysis of a large corpus of written text. The technique was originally
developed in the context of information retrieval (Deerwester, Dumais, Furnas, Landauer,
& Harshman, 1990) and was adapted for psycholinguistic analyses by Landauer and his
colleagues (Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998; Landauer,
1999).

LSA must be trained with a large corpus of written text. The raw data LSA are
meaningful passages and the set of words each contains.  A matrix is constructed whose
columns are words and whose rows are documents. The cells of the matrix are the
frequencies with which each word occurred in each document.  The data upon which the
analyses reported below are based consist of a training corpus of about 11 million words
(what a typical American school child would read from grade 3 through grade 14),
yielding a co-occurrence matrix of more than 92,000 word types and more than 37,000
documents.  Note that LSA considers only patterns of word usage; word order, syntax, or
rhetorical structure are not taken into account.

Word usage patterns, however, are only the input to LSA which transforms these
statistics into something new - a high-dimensional semantic space.  LSA does this
through dimension reduction. Much of the information in the original pattern of word
usage is accidental and inessential. Why did an author choose a particular word in a
specific place rather than some other alternative?  Why was this particular document
included in the corpus rather than some other one? LSA discards all of this excess
information and focuses only upon the essential semantic information in the corpus. To
tell what is essential and what is distracting information, LSA uses a standard
mathematical technique called singular value decomposition, which allows it to select the
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most important dimensions underlying the original co-occurrence matrix, discarding the
rest.  The matrix is decomposed into components associated with its singular values,
which are ordered according to their importance. The 300 most important components
define the semantic space. The dimensionality of the space is chosen empirically: a
(roughly) 300-dimensional space usually compares best with human performance.

LSA thus makes the strong psychological claim that word meanings can be
represented as vectors in a semantic space of approximately 300 dimensions. But not only
word meanings are represented as vectors in this space, documents are similarly
represented as well. And new documents - sentences, paragraphs, essays, whole book
chapters - can also be represented as vectors in this same space. This is what makes LSA
so useful. It allows us to compare arbitrary word and sentence meanings, determine how
related or unrelated they are, and what other words or sentences or documents are close to
them in the semantic space. A word of caution is necessary here: LSA knows only what it
has been taught. If words are used that did not appear in the training corpus, or which are
used differently than in the training corpus, LSA, not unlike a person, does not recognize
them correctly or at all.

The measure that is used to calculate semantic relatedness is the cosine between
two vectors. As a first approximation, readers unfamiliar with this concept may think of
cosines as analogous to correlation coefficients.  The cosine varies from -1 to +1, +1
denoting identity and 0 denoting unrelatedness.  Most cosines between words are
positive, though small negative values are common (the average cosine for randomly
chosen word pairs is .02, with a standard deviation of .06). The more closely two words
are related semantically, the higher their cosine. For instance, the singular and plural
forms of a sample of 100 common nouns had a mean cosine of.66, with a standard
deviation of.15.

A second measure that is often useful is the length of a vector, which, like the
cosine, is defined mathematically. Intuitively, the vector length tells us how much
information LSA has about this vector. Thus, the length of sentence vectors is generally
greater than the length of word vectors, and the length of paragraph vectors is even
greater. Words that LSA knows a lot about  (because they appear frequently in the
training corpus, in many different contexts) have greater vector lengths than words LSA
does not know well. Thus, horse has a vector length of 2.49, while porch has a vector
length of.59. Function words that are used frequently  in many different contexts have
low vector lengths ( the and of have vector lengths of .03 and .06, respectively, and their
cosine is .99 – LSA knows nothing about them and cannot tell them apart since they
appear in all contexts).

All we can do, however, is compare one vector with another. Inspecting the 300
numbers that compose it tells us little, for the dimensions of the semantic space are not
identifiable. The only way we can tell what a given vector means is to find out what other
words or sentence vectors are close to it. Thus, we can ask LSA to list the words closest
to a given vector in the semantic space. The semantic neighborhood of a word tells us a
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great deal about the word. Indeed, we shall make considerable use of semantic
neighborhoods below.

Often we have some specific expectations about how a vector should be related to
particular words or phrases. In such cases it is most informative to compute the cosine
between the vector in question and the semantic landmark we have in mind. In most of
the examples discussed below when we need to determine what a vector that has been
computed really means, it will be compared to such landmarks. Suppose we compute the
vectors for horse and porch. To test whether what has been computed is sensible or not,
we might compare these vectors to landmarks for which we have clear-cut expectations.
For instance, the word gallop should have higher cosine with horse than with porch
(the cosines in fact are .75. and .10, respectively), but the word house should have a
higher cosine with porch than with horse (the cosines are .08 for horse and .65 for
porch). This is not a very powerful test, but it is intuitively compelling and simple. What
the particular landmarks are is not terribly important, as long as we have clear shared
semantic expectations. Someone else might have chosen race instead of gallop, or door
instead of house, or many other similar word pairs, with qualitatively equivalent results.

Readers can make their own computations, or check the ones reported here, by
using the web site of the Colorado LSA Research group: http://lsa.colorado.edu.  First
select the appropriate semantic space and dimensionality. The semantic space used here
is the "General Reading through First Year of College" space with 300 dimensions and
term-to-term comparisons. To find the semantic neighborhood of horse, one types
"horse" into the Nearest-Neighbor-box and chooses “pseudodoc”. To find the cosine
between horse and gallop, one types "horse" and into one box and "gallop" into the other
box of the One-to-Many-Comparison.

LSA has proved to be a powerful tool for the simulation of psycholinguistic
phenomena as well as in a number of applications that depend on an effective
representation of verbal meaning.  Among the former are Landauer and Dumais (1997),
who have discussed vocabulary acquisition  as the construction of a semantic space,
modeled by LSA; Laham’s (1997) investigation of the emergence of natural categories
from the LSA space; and  Foltz, Kintsch, & Landauer’s (1998) work on textual
coherence. To mention just three of the practical applications, there is first, the use of
LSA to select instructional texts that are appropriate to a student's level of background
knowledge (Wolfe, Schreiner, Rehder, Laham, Foltz, Landauer, & Kintsch, 1998).
Second, LSA has been used to provide feedback about their writing to 6th-grade students
summarizing science or social science texts (E. Kintsch , Steinhart, Stahl, Matthews,
Lamb, and the LSA Research Group, in press). The application of LSA that has aroused
the greatest interest is the use of LSA for essay grading. LSA grades the content of
certain types of essays as well and as reliably as human professionals (Landauer, Laham,
Rehder, & Schreiner, 1997). The human-like performance of LSA in these areas strongly
suggests that the way meaning is represented in LSA is closely related to the way humans
operate.  The present paper describes an LSA-based computational model, which
accounts for another aspect of language use, namely, how meaning can be modified
contextually in predication. The model is discussed first and illustrated with some simple
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examples of predication. Then the model is used to simulate several more complex kinds
of language processing.

LSA-Semantics: Predication

A semantic theory requires a definition of both the elements of the theory and the
rules for combining these elements. The elements of an LSA-semantics are the word
vectors in the semantic space. The standard composition rule for vectors in LSA has been
to combine vectors by computing their centroid. Consider propositions of the form
PREDICATE[ARGUMENT], where A is the vector corresponding to ARGUMENT and
P is the vector corresponding to PREDICATE. According to the standard LSA practice,
the meaning of the proposition is given by the centroid of A and P. In n dimensions, if A
= {a1, a2, a3,.....an} and P = {p1, p2, p3,.......pn}, the centroid (A,P) = {a1+p1, a2+p2, a3+p3,
........an+pn}. This is unsatisfactory, because the vector P is fixed and does not depend on
the argument A, in contradiction to the argument above that P means something different,
depending on the argument it takes. Every time we use P in a different context  A, we  do
not predicate all of P about A, but only a subset of properties of P that are contextually
appropriate for A. This subset may be quite unusual and specific to that context (as in
some of the examples above) or it may be large and diffuse, in which case the centroid
may provide an adequate description of the meaning of the whole proposition.

To capture this context dependency an alternative composition rule, the
predication algorithm, is proposed here. The essential characteristic  of this algorithm is
to strengthen features of the predicate that are appropriate for the argument of the
predication. This is achieved by combining LSA with the construction-integration model
of text comprehension (Kintsch, 1988, 1998). Specifically, items of the semantic
neighborhood of a predicate that are relevant to an argument are combined with the
predicate vector, in proportion to their relevance through a spreading activation process.

The 300 numerical values of a word vector define the meaning of a word in LSA.
This is a context-free definition, or rather, meaning is defined with respect to the whole
training corpus. Another way of representing aspects of the meaning of a word is by
looking at its neighbors in the semantic space. The closest 20 or 100 neighbors tell us
something about the meaning of a word, though not as much as the vector itself, which
positions the word in the semantic space with respect to all other words. The closest
neighbors, however, index some important features of the word and contexts in which it
is used.

 Consider a proposition of the form P(A), where P and A are terms in the LSA
semantic space represented by vectors. In order to compute the vector for P(A), the
construction-integration model of Kintsch (1988,1998) will be used.  Let {S} be the set
of all items in the semantic space except for P and A. The terms  I in {S} can be arranged
in a semantic neighborhood around P: their relatedness to P (the cosine between each
item and P) determines how close or far a neighbor they are. Almost all items in the space
will be at the periphery of the neighborhood, with cosines close to 0, but some items will
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cluster more or less densely around P. Let cos(P, I) be the cosine between P and I in {S}.
Furthermore, let cos(A, I) be the cosine between A and item I in {S}.

 A network consisting of the nodes P, A, and all I in {S} can be constructed. One
set of links connects A with all other nodes. The strength  s(A,I) of these links is
codetermined by how closely related they are to both A and P:

s(A,I) = f(cos(A,I), cos(P,I))
The function f must be chosen in such a way that s(A,I) > 0 only if I is close to both P
and A. A second set of links connects all items I in {S} with each other. These links have
low negative strengths, that is, all items I interfere with each other and compete for
activation. In such a self-inhibiting network, the items most strongly related to A and P
will acquire positive activation values, whereas most items in the network will be
deactivated because they are not related to both  A and P. Thus, the most strongly
activated nodes in this network will be items from the neighborhood of P that are in some
way related to A.

The k most strongly activated items in this network will be used in the
construction of the vector for P(A). Specifically, the vector computed by the predication
procedure is the weighted average of the k most activated items in the net described
above, including P and A, where the weights are the final activation values of the nodes.

An example will help to clarify how this predication algorithm works. Consider
the sentences The horse ran, which has the predicate  ran and the argument horse (Figure
1). In predication, we first compute the neighborhood of the predicate ran – a set of items
ordered by how strongly related they are to ran.  For the sake of simplicity, only three
items from the neighborhood of ran are shown in Figure 1: stopped, down, and hopped,
which have cosines with ran of .69, .60, and .60, respectively.  A network is constructed
containing  these three items, the predicate ran and the argument horse, as shown in
Figure 1. The neighbors are connected to ran with links whose strength equals the cosine
between each neighbor and ran. Next, the cosines between the neighbors and the
arguments horse are computed (which equal .21, .18, and .12, respectively) and the
corresponding links are added in Figure 1. We also add a link between ran and horse,
with a strength value equal to the cosine between them (.21). Finally, inhibitory links are
inserted between each pair of neighbor-nodes. Activation is then spread in this network
(using the CI program described in Kintsch, 1998), until a steady state is reached. This
integration process  will select items that are close to ran, but also relevant to horse: in
this case, ran and stopped  will be most strongly activated, down will be somewhat
activated, and hopped will receive no activation.

Figure 1

In the computations below two approximations are used:
(1) First, instead of constructing a huge network comprising all items in the

semantic space, almost all of which would be rejected anyway, only the m closest
neighbors of a predicate will be considered. The size of m varies because in order to
select the terms that are most relevant to both A and P, a smaller or larger neighborhood
must be searched, depending on how closely related A and P are. Thus, for most
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sentences combining familiar terms in expected ways, m  = 20 works well, because terms
related to A will be found even among the closest neighbors of P. For metaphors, on the
other hand, where the predicate and argument can be quite distant, the crucial terms are
usually not found among the top 100 neighbors of the predicate,  and m needs to be
larger, say 500 neighbors. A neighborhood of 1500, on the other hand, is too large: the
terms selected from such a large neighborhood by the predication algorithm may only
have a tenuous relationship to P and hence misrepresent it.

(2) Instead of using a weighted average of P and the k most relevant neighbors for
the vector representing P(A), the weights will be neglected. Since only small values of k
are used and the differences in activation among the top few terms are usually not
dramatic, this computational shortcut has little effect. It greatly simplifies the calculation
of predicate vectors, however. Since the most highly activated terms in the neighborhood
of a predicate are those with the highest cosine to the argument, one merely has to add the
k top-ranked terms to A and P.  Thus, the vector for P(A) is computed as the centroid of
P, A, and the k most activated neighbors of P (normally, LSA represents the meaning of
P(A) simply as the centroid of P and A; the predication algorithm biases this vector  by
including  k contextually appropriate neighbors of P).

The parameter k must neither be too small nor too large. If too few terms are
selected, a relevant feature might be missed; if too many terms are selected, irrelevant
features will be introduced. Values between k = 1 and k = 5 have been found to be most
appropriate. When processing is more superficial, as in the similarity judgments
discussed below, k = 1 gives the best results. If deeper understanding is required, k -
values of 3 or 5 appear optimal. Selecting more than 5 terms usually introduces unwanted
noise.

Some Simple Examples of Predication

How satisfactory is the proposed predication algorithm?  It is difficult to give a
strong answer to this question. If there existed a closed set of sentences corresponding to
P(A) propositions, one could obtain a random sample, compute the corresponding
vectors, and find some way to compare the result with our intuitions about the meaning of
these sentences. Instead, all that can be done is to show for a few simple sample
sentences that the predication algorithm yields intuitively sensible results, and then focus
on some semantic problems that provide a more demanding test. Metaphor interpretation,
causal inferences, similarity judgments, and homonym disambiguation are some
domainsthat allow a more specific evaluation as well as some comparisons between  sets
of experimental data and LSA predictions.

As an example of simple predication, consider the vectors corresponding to The
horse ran and The color ran. First, the closest 20 neighbors to ran in the LSA space are
computed.  This list includes ran itself, since a word is always part of its own
neighborhood. Then, the cosines between these 20 terms and horse and color,
respectively, are calculated. A net is constructed linking horse, respectively color, with
the 20 neighbors of ran, with link strength equal to the cosine between each pair of terms
and inhibitory links between each of the 20 neighbors. The absolute value of the sum of
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all negative links is set equal to the sum of all positive links, to insure the proper balance
between facilitation and inhibition in the network. This network is then integrated,
resulting in final activation values for each of the 20 neighbors. These calculations are
summarized in Table 1.

Table 1

The vector for The horse ran computed by predication is therefore the centroid of
horse, ran, and the 5 most highly activated terms from the neighborhood of ran (column
3 Table 1), which are ran  itself and stopped, yell, came and saw.  The vector
representing the meaning of The color ran is obtained in the same way: it is centroid of
color, ran, and down, shouted,  looked, rushed, and ran. Thus, while ran has different
senses in these two contexts, these senses are by no means unrelated: ran in the color-
sense is still strongly tied to movement verbs like rushed and hurry.

 It is important to note that just which words are selected from a neighborhood by
the predication algorithm does not have to be intuitively obvious, and often is not (like
the choice of yell for the horse-sense of ran above): what needs to be intuitively
meaningful is the end result of the algorithm, not the intermediate  steps. In many cases,
items from a neighborhood are selected that  seem far from optimal to our intuitions; they
achieve their intended purpose because their vectors have weights on the abstract features
that are relevant in this particular context.

To interpret the meaning of these vectors, they are compared to appropriate
landmarks. Landmarks need to be chosen so as to highlight the intuitively important
features of the sentence.  Gallop was chosen as a landmark that should be closer to horse
ran than color ran, and dissolve (a synonym for this sense of run according to WordNet)
was chosen to be closer to color ran than to horse ran. This is indeed the case, as shown
in Table  2. Ran by itself is close to gallop,  but is essentially unrelated to dissolve.  For
horse ran, the relationship  to gallop  is strengthened, but the relationship to dissolve
remains the same. The opposite result is obtained when ran is put into the context color:
the relationship to gallop is weakened (but it does not disappear – the color ran has
different connotations than the color dissolved)  and that to dissolve  is strengthened .

  Table 2

Choosing different landmarks, say race and smudges, yields a qualitatively
similar picture. Varying the size of the semantic neighborhood  (parameter m) has little
effect in this example, either. For m = 50 and m = 100 the cosines with the landmarks
vary by a few percentage points, but the qualitative picture remains unchanged.

The horse ran is a more frequent expression than The color ran. In fact, in the
corpus on which the semantic space used here is based, color ran appeared only once (in
about 11 million words), whereas horse ran was present 12 times in the input data. Thus,
LSA had little occasion to learn the meaning  of color ran. Most of the interpretation that
LSA gives to color ran is based on indirect evidence, rather than on direct learning.
Indeed, if the semantic space is re-scaled with the single mention of color ran omitted,
Table 2 remains basically unchanged. Thus, LSA can generate an intuitively plausible
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interpretation for a word sense it has never experienced: it does not need to be trained on
the specific sense of ran in the context of color, it can generate the right meaning for the
sentence on the basis of whatever else it knows about these words.  As Landauer and
Dumais (1998) have argued, vocabulary acquisition does not consist in learning about
many thousands of separate word meanings, but in constructing a semantic space and
embedding words and phrases into that space.

A second example of simple predication involving different senses of a word is
shown in Figure 2 where the meanings of the sentences The bridge collapsed, The plans
collapsed, and The runner collapsed are compared. The landmarks were chosen in such a
way that each sentence should be closest to one of the landmarks. The results confirm
these expectations. The landmark break down is closest to The bridge collapsed.
Appropriately, plans collapsed is closest to failure. For the race landmark, runner
collapsed is closest. Thus, these results agree reasonably well with our intuitions about
what these sentences mean. However, this is not the case when the sentence vectors are
computed as simply the centroid of the subject and verb. In that case, for instance, break
down is approximately equidistant to all three sentences.

Figure 2

The computation of sentence vectors by predication, or for that matter, by the
centroid method, depends not only on the cosine between the word vectors, but also on
how much information LSA has about these words. Technically speaking, a resultant
vector is not only determined by the angle between its components in multi-dimensional
space, but also by the length of the component vectors. Longer vectors have a greater
influence on the centroid than shorter vectors. This is readily apparent in two dimensions,
where it is a direct consequence of the law of parallelograms:

The direction of ab, the resultant of vector a and is not very different from that of
ac , the vector sum of a and c, in spite of the fact that the angle between a and b is three

times as large as the angle between a and c, because a is about three times as long as
either b or c. In terms of LSA this means that if we take the centroid of two terms of
unequal length, it will be weighted in favor of the term with the greater vector length.
This has important consequences, as illustrated in the next example.

a

b

c

acab
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The vector for bird has length 2.04 while the vector for pelican has length 0.15,
reflecting, in part, the fact that LSA knows a lot more about birds than about pelicans.
When the two terms are combined, the longer vector completely dominates: the cosines
between bird+pelican and the individual terms bird and pelican are 1.00 and .68,
respectively. For comparison, the cosine between bird and pelican is .64. In other words,
pelican doesn't make a dent in bird.

That result  has serious consequences for predication. Of course, the centroid does
not distinguish at all between The bird is a pelican and A pelican is a bird. Predication
does, but with very asymmetric results. A pelican is a bird turns the pelican into a bird,
almost totally robbing it of its individuality, as shown in Figure 3. Pelican is a bird
behaves like a bird with respect to the five landmarks in Figure 3 - closer to sings
beautifully than to eat fish and sea! If we combine a short and a long vector, we get back
basically the long vector - if the differences in vector length are as pronounced as in the
case of bird and pelican, which differ by a factor of 13.

Figure 3

Figure 4 illustrates what happens when the direction of predication is reversed.
For LSA the meaning of A bird is a pelican is about the same as the meaning of bird by
itself. Since LSA is vague about pelicans, we are not adding much meaning or knowledge
to bird by saying it is a pelican.

Figure 4

A distinction needs to be made here between knowledge and information. LSA
represents  cumulative  knowledge, not transient information. It measures not the new
information provided by a sentence but what we already knew about its components.
Predicating pelican about bird (The bird is a pelican)  adds very little to our knowledge
because we (and LSA) know very little about a pelican, other than that it is a kind of bird
- it eats a little bit more fish than most birds do and sings a little bit less beautifully. The
vector for bird is pelican is not very different from the vector for bird. In contrast, the
sentence The bird is a pelican conveys information, because it excludes numerous other
possibilities. On the other hand, pelican is a bird modifies our knowledge of pelican by
emphasizing its general bird-features and de-emphasizing its individuality as a pelican.
The language marks these distinctions. We say The bird is a pelican, providing
information about some specific bird. Or we say A pelican is a bird, referring to the
generic pelican.  In the first case, we provide information, in the latter we provide
knowledge. The informationally empty The pelican is a bird, and the epistomologically
empty A bird is a pelican are not common linguistic expressions.

A similar distinction can be made between information and knowledge in a text.
For each text, there exists relevant background knowledge with respect to the topic of the
text. The text itself, however, usually involves information that is new and not already
represented in the background knowledge. Thus, in a story unexpected things are
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supposed to happen, building upon but different from what we already know. The
textbase represents this new information in a text, while LSA provides a representation of
the relevant background knowledge -  what we already knew before we read the text.  In
comprehending the text, a representation is constructed – the situation model – that
integrates the novel textual information and the pre-existing background knowledge.

Metaphors

As long as we are dealing with simple, familiar sentences, the results obtained
with the predication algorithm often do not differ much from computations using the
simpler centroid method.  We need to turn to semantically more demanding cases to
appreciate the full power of predication. The first of these cases is metaphor
comprehension. This topic is discussed more fully in Kintsch (in press). It will be briefly
summarized here, because it is crucial for an understanding of predication.

Experimental  psycholinguistic evidence implies that metaphoric predication is
just like any other predication in terms of the psychological processes involved (for
reviews see Glucksberg & Keysar, 1994; Glucksberg, 1998; Gibbs, 1994). Thus, we need
to show that applying the predication algorithm to metaphors in exactly the same way as
it is applied to other sentences yields sensible interpretations of metaphors. Kintsch (in
press) did just that. It showed that the interpretations of metaphors arrived at by the
predication procedure agree with our intuitions reasonably well and, furthermore,
demonstrated that some of the major phenomena in the experimental literature on
metaphor comprehension can be simulated in this way, as direct consequences of the
predication algorithm.

Figure 5

Glucksberg (1998) discusses in some detail the metaphor My lawyer is a shark.
Figure 5 presents the results of a comparison of the vector for lawyer alone and the vector
computed by predication for My lawyer is a shark with landmarks chosen to highlight
both the relevant and irrelevant features of the metaphor. By itself, lawyer is strongly
related to concepts like justice and crime, not at all related to shark and fish, but lawyer is
moderately related to viciousness. Predicating shark about lawyer changes this picture
considerably. The lawyer-properties remain strong. The interesting thing is what happens
to the shark-properties: viciousness is emphasized, in agreement with my intuitions that
My lawyer is a shark means something like My lawyer is vicious. But it does not mean
exactly that, otherwise we might have said so in the first place. There is also a little bit of
shark and fish in it, and if we look at bloodthirsty or tenacious, we would see that
elevated, too. Thus, the meaning of a metaphor is not fully captured by a literal
paraphrase, but is richer, more expressive, and fuzzier than corresponding literal
expressions.

Figure 5 totally depends on the use of the predication algorithm. If the meaning of
the metaphor is computed as the centroid of the words, the results do not make sense. The
centroid of lawyer and shark is somewhere in semantic no man’s land: more strongly
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related to shark and fish (cosines of .83 and .58, respectively) than to any of the lawyer-
properties or to viciousness.

To compute the predication vector in Figure 5 a semantic neighborhood of m =
500 was used. When a predicate and argument are semantically related, features that are
relevant to both can usually be found even with lower values of m. Thus, for the
calculations in the previous section m was typically set to equal 20.  For metaphors,
where argument and predicate can be quite unrelated in their literal senses, as in the
present example, a larger semantic neighborhood must be searched to find three or five
terms relevant to the predication.  Furthermore, in order to insure that all terms selected
are at least minimally related to both P and A, a threshold of two standard deviations
above the mean for all words in the space was used. Since the mean cosine between all
word pairs in the space is .02 and the standard deviation is .06, this meant that all cosines
had to be at least .14. For m < 100, predication fails (the concept lawyer is not modified
at all – there are no terms among the 100 closest LSA neighbors of shark that are
semantically related to lawyer, that is, terms whose cosine with lawyer is at least .14, the
threshold value we have chosen). For m = 500, 1000 or 1250, roughly equivalent  results
are achieved. As the neighborhood grows too large (m = 1500) the procedure begins to
pick up random noise.

One of the salient facts about metaphors is that they are, in general not reversible.
Reversed metaphors either mean something different, or they do not mean much at all.
Kintsch (in press) has shown that the predication algorithm yields results in agreement
with these intuitions. Surgeon is related semantically to scalpel, but not to axe; the
reverse is true for butcher. My surgeon is a butcher has a cosine of .10 with scalpel and a
cosine of .42 with axe; the reversed metaphor, My butcher is a surgeon has a cosine of
.25 with scalpel and .26 with axe. On the other hand, reversing My shark  is a lawyer
does not yield any clear interpretation at all.

In order to assess the generality of the predication algorithm, Kintsch (in press)
analyzed the first seven examples of nominal metaphors cited in Glucksberg, Gildea &
Bookin (1982). Overall, the algorithm produced satisfactory results: the cosine between
the metaphor and the relevant landmark was  significantly higher  than between the
metaphor  and the irrelevant (literal) landmark. The analysis failed in the case of Her
marriage is an icebox – apparently because  the LSA space used did not know enough
about iceboxes, nor about cold marriages. This failure illustrates the need to distinguish
between the adequacy of the underlying knowledge space and the predication  algorithm
itself. If LSA does not know something, it will perform badly with any algorithm;
however, all one would presumably have to do in this case is to train LSA with a richer
and more informative body of texts.

Two interesting phenomena about the time course of metaphor comprehension are
also discussed in Kintsch (in press). First, it has been shown (Glucksberg, McGlone, &
Manfredini, 1997) that the time it takes to comprehend a metaphor is increased when the
literal meaning is primed. Thus, after reading sharks can swim, My lawyer is a shark
requires more time to comprehend than after a neutral prime. The literal prime activates



Predication 

16

those features of shark that are related to swim. Hence,  in the CI model, when the
metaphoric sentence is being processed, the wrong features start out with a high
activation value and it takes several integration cycles to deactivate the literal features
and activate the metaphoric features. As the reverse of that, a metaphoric prime can slow
down the comprehension of a literal sentence (Gernsbacher, Keysar, & Robertson, 1995).
If My lawyer is a shark precedes sharks can swim in a sentence verification task,
verification times are longer than if a neutral prime is used. The account that the
predication model gives is essentially the same as in the first case. The metaphor
activates features like viciousness and deactivates features like fish, so when sharks can
swim must be verified, the wrong features are active and it requires several cycles of the
integration process to deactivate these features and at the same time boost the activation
of the features that are relevant to swim.

Thus, Kintsch (in press) goes beyond demonstrating that the predication model
yields intuitively sensible interpretations of metaphors. It also shows that some of the
major phenomena about metaphor comprehension in the psycholinguistic literature are
readily accounted for within that framework. This is of interest, on the one hand, because
it suggests that metaphor comprehension can indeed be treated in the same way as literal
predication, and on the other hand, because it provides a good demonstration of how the
predication algorithm extends the range of phenomena that LSA can account for.

Causal Inferences

Many sentences imply causal consequences or causal preconditions. Thus, The
doctor drank the water implies pragmatically (though not logically) the causal
precondition that the doctor was thirsty, and The student washed the table implies the
causal consequence that the table was clean. Usually, these are described as causal
inferences, though some authors, such as Kintsch (1998), argue that the term inference is
misleading in this context. When we read The student washed the table we do not
usually, in addition, draw an inference that the table is clean. Rather, comprehending that
sentence automatically makes available this information, without any extra processing.
Long-term working memory assures that there will be a link between the sentence The
student washed the table and its anticipated causal consequence, the table was clean.
LSA provides a computational model of how long-term working memory functions in
cases like these. Kintsch, Patel, & Ericsson (1999) have argued that the semantic space
functions as the retrieval mechanism for working memory. Thus, if understanding The
student washed the table involves computing its vector in the semantic space, closely
related vectors such as The table was clean automatically become available in long-term
working memory and may be subject to further processing (e.g., in a sentence verification
task).

It remains to show that predication indeed delivers the right kind of results. Are
sentence vectors in LSA, computed by predication, closer to causally related inferences
than to causally unrelated but superficially similar sentences?  Specifically, is the vector
for The student washed the table closer to The table was clean than to The student was
clean?
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We are concerned with subject-verb-object sentences, that is, propositions of the
form

PREDICATE[ARGUMENT1<AGENT>,  ARGUMENT2<OBJECT>].
The corresponding syntactic structure is given by

NP(N1)+VP(V+N2).
The syntax suggests that propositions of this form involve two separate predication
operations: first V is predicated about N2, in the same way as discussed for simple
predication above; then VP is predicated about N1.

Specifically, in Step 1 the neighborhood of size m  (m = 20) for the predicate V is
obtained. We select those terms from this neighborhood that are most relevant to N2: a
network consisting of N2 and all neighbors, with link strengths equal to the cosine
between N2 and each neighbor, is integrated and the k (k = 5) terms with the highest
activation values are used to approximate the vector for (V+N2). In Step 2 the
neighborhood is calculated for the complex predicate (V+N2), consisting of V, N2 and
the k most relevant neighbors selected in Step 1. N1 is then used to determine the
relevant terms from that neighborhood. The sentence vector, then, is approximated by the
centroid of N1, V, N2, the k neighbors selected in Step 1, and the k neighbors selected in
Step 2.

Thus, LSA, guided by a syntactic parse of the sentence, constructs a vector that
represents the meaning of the proposition as a whole. To evaluate how well a predication
vector captures the intuitive meaning of a proposition, causal inferences will be chosen as
landmarks. For example,

The student washed the table --consequence--> the table is clean
or

The doctor drank the water --precondition--> the doctor was thirsty.
The vector representing the meaning of the sentence The student washed the table,
computed by the predication procedure outlined above should be closer to the correct
inference the table is clean than to the incorrect inference the student is clean.

As Table 3 shows, this is not generally the case when the meaning of the sentence
is represented by the centroid of the three words. In fact, for the four examples analyzed
here, the centroid makes the wrong inference in three cases. As we have seen above, the
centroid is heavily influenced by vector length, so that semantically rich terms, like
hunter, will always dominate semantically sparse terms, like elk. The predication
procedure is able to overcome this bias in three of the four cases analyzed here. For
instance, the doctor drank the water is strongly biased towards the water was thirsty, but
predication manages to reverse that bias. Similarly for

The student washed the table --> the table was clean,
The student dropped the glass --> the glass was broken.

However, the wrong conclusion is reached in the case of
The hunter shot the elk --> the hunter was dead.

But even where predication fails to detect the correct inference, the cosine for the elk was
dead increased twice as much as the cosine for the hunter was dead as a result of
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predication over a centroid based comparison. Apparently predication does something
right, but may have failed for parametric reasons.

Table 3

There are two parameters that need to be explored: the size of a predicate
neighborhood was set at m = 20, and the number of most relevant terms chosen to
represent the predicate vector was set at k = 5. Exploratory calculations suggest that these
choices of parameter values are not necessarily optimal.

The calculations for The hunter shot the elk were repeated with the size of the
predicate neighborhood m = 100. Increasing the neighborhood size, however, did not
improve the performance of LSA in this case. Indeed, the bias in favor of hunter dead
was slightly increased: the cosine between the sentence vector computed with m = 100
and hunter dead turned out to be .77, versus .72 for elk dead. What seemed to happen
was that as the number of possible selections increased, the argument could select terms
it liked that were, however, too distant from the predicate. For instance, when the
neighborhood of elk shot is so large, rather distant terms like bow and arrow can be
selected because they are so close to hunter, biasing the meaning of the sentence in
inappropriate ways.

Better results were obtained by manipulating k, the number of terms used to
approximate the predication vector. A smaller value of k than 5 which was used so far
might work better, because in some cases the first three or four words that were selected
from a neighborhood appeared to make more sense intuitively than the last ones. Hence
the computations for The hunter shot the elk were repeated with k = 3. This resulted in
some improvement, but not enough: the cosine between The hunter shot the elk and
hunter dead became .69, versus .68 for elk dead.

Another possibility is that LSA just does not know enough about elks. If the more
familiar word deer is substituted for elk, things improve. For k = 3, we finally get

The hunter shot the deer --> the deer is dead.
The cosine between The hunter shot the deer and The deer is dead is .75, whereas the
cosine with The hunter is dead is now only .69.

An application of the predication algorithm to an existing set of examples of
causally linked sentences uses materials developed by Singer,  Halldorson, Lear, &
Andrusiak (1992). In this well-known study, Singer et al. (1992) provided evidence that
causal bridging inferences were made during reading. In Experiment IV, sentence pairs in
which the second sentence states a causal consequence of the first were compared with
sentence pairs in which the second sentence merely follows the first temporally. An
example of a causal sentence pair would be Sarah took the aspirin. The pain went away.
An example of temporal succession would be Sarah found the aspirin. The pain went
away. Their stimulus materials provide a further test of the ability of the predication
model to explain causal inferences: the semantic relatedness between the sentences
should be greater for the first than for the second pair of sentences.2 Five of their stimuli
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were of the simple S-V-O form (or could be rewritten in that form with slight, inessential
modifications) required by the present analysis; the other examples were syntactically
more complex.  The following sentence pairs could be analyzed:

Sarah took/found  the aspirin. The pain went away.
(.89/.47)
Harry exploded/inflated the paper bag. He jumped in alarm.
(.33/.28)
The hiker shot/aimed-at the deer. The deer died. 
(.74/.56)
Ted scrubbed/found the pot. The pot shone brightly.
(.45/.41)
The camper lost/dropped a knife. The camper was sad.
(.48/.37)

The numbers in parentheses below each line show the cosine values that were computed
between the first and second sentence. 3 In every case, causally related sentences had a
higher cosine than temporally related sentences. The average cosine for causally related
sentence pairs was .58, versus .42 for temporally related sentence pairs.

Together with the examples presented in Table 3, the analysis of the stimulus
materials from Singer et al. (1992) suggests that predication can give a satisfactory
account of causal inferences in comprehension. Causally related sentence pairs appear to
have generally higher cosines than appropriate control items, showing that the model is
sensitive to the causal relation; the model does not yet tell us, however, that what it has
found is a causal relation.

Judgments of Similarity

Another domain where the predication model will be applied is that of similarity
judgments. The cosines between concepts computed by LSA do not correlate highly with
similarity judgments. Mervis, Rips, Rosch, Shoben, & Smith(1975; reprinted in Tversky
& Hutchinson, 1986) reports similarity judgments for a 20 x 20 matrix of fruit names.
The correlation between these judgments and the cosines computed from LSA is
statistically significant, but low, r  = .32. Similarly, for the data reported below in Table
4, the correlation between similarity judgments and the corresponding cosines is r = .33.
These results appear to be representative.4 In fact, there is no reason to believe that these
correlations should be higher. It has been generally recognized for some time now that
similarity judgments do not directly reflect basic semantic relationships but are subject to
task- and context-dependent influences. Each similarity judgment task needs to be
modeled separately, taking into account its particular features and context.

It makes a difference how a comparison is made, what is the predicate and what is
the argument. Tversky and Hutchinson (1986) point out that we say Korea is like China,
but not China is like Korea, presumably because the latter is not very informative and
thus violates Gricean maxims. The predication model provides an account for this
observation. In Korea is like China, Korea is the argument and China the predicate; thus
the resulting vector will be made up of Korea plus China-as-relevant-to-Korea - just as A
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pelican is a bird was made up of pelican plus bird-as-relevant-to-pelican. (Obviously, is
and is-like do not mean the same, but this by no means irrelevant distinction must be
neglected here). On the other hand, for China is like Korea, we compute a vector
composed of China and Korea-as-relevant-to-China. The results are quite different. To
say China is like Korea is, indeed, much like saying Bird is pelican - both statements are
semantically uninformative! The cosine between China and Korea-as-relevant-to-China
is .98, that is we are saying very little new when we predicate Korea about China in terms
of the LSA semantics of the two concepts. However, to say Korea is like China, yields a
cosine of only .77 between Korea and China-as-relevant-to-Korea. Our rich information
about China modifies our concept of Korea successfully, whereas the little we know
about Korea is so much like China anyway that it has not much of an impact on our
concept of China.

The reason for the asymmetry in the previous example lies in the difference in the
amount of knowledge LSA has about China and Korea: the vector length for the former
is 3.22, versus 0.90 for the latter. When the vector length of the words being compared is
more equal, the order of comparison may not make much of a difference. Thus, for
Buttons are like pennies and Pennies are like buttons, the cosine between buttons and
pennies-like-buttons is .32, which is about the same, .28, as the cosine between pennies
and buttons-like-pennies. Even if there are differences in vector length when the words
being compared are basically unrelated, order differences may be minor. For Buttons are
like credit cards and Credit cards are like buttons, roughly equal cosines are obtained for
the two comparisons (.04 and .07, respectively), in spite of the fact that credit cards has a
vector length of 3.92, ten times as much as buttons.

The literature on similarity judgments is huge and complex and it is not at all
clear at this point just which phenomena the predication model can account for and what
its limits are. However, one systematic comparison with a small but interesting data set
will be described here. Heit and Rubenstein (1994) report average similarity judgments
for 21 comparisons with two different instructions. In one case, subjects were told to
judge the similarity between a pair of animal names focusing on "anatomical and
biological characteristics, such as internal organs, bones, genetics, and body chemistry".
In another conditions, subjects were asked to focus on "behavioral characteristics, such as
movement, eating habits, and food-gathering and hunting techniques" (p. 418). These
instructions made a great deal of difference. For instance, hawk-tiger was judged highly
similar with respect to behavior (5.72 on a 10-point scale) but not with respect to
anatomy (2.29), whereas shark-goldfish were more similar with respect to anatomy (5.75)
than with respect to behavior (3.60). Intuitively, one would expect such results - the
question is whether LSA has the same intuitions or not.

In terms of the predication model, either Anatomy or Behavior were predicated
about each animal name to be judged. What was compared was Animal1-with-respect-to-
behavior and Animal2-with-respect-to-behavior on the one hand, and Animal1-with-
respect-to-anatomy and Animal2-with-respect-to-anatomy on the other. Specifically, the
semantic neighborhoods of both instruction sentences quoted above were determined, and
the terms most relevant to the to-be-compared words were selected and combined with
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the word vector. Table 4 shows that LSA predicted the results of Heit and Rubenstein
very well indeed. There are eight comparisons (rows 1-8 in Table 4) for which
anatomical similarity was greater by at least one point than behavioral similarity. For
these comparisons the cosines for the with-respect-to-anatomy comparisons were greater
(equal in one case) than those for the behavioral comparison. There were four word pairs
for which the behavioral similarity was rated at least one point higher than the anatomical
similarity (rows 18-21). In all these cases the cosines for the behavioral comparisons
were higher than for the anatomical comparisons. On the other hand, for the nine word
pairs for which the empirical results were inconclusive (average ratings differed less than
one point, rows 9-17), LSA matched the direction of the difference only in 4 cases.
Average results are shown in Figures 6, where the difference between Behavior minus
Anatomy for the rating data as well as the cosines is plotted for items rated more similar
in terms of behavior, neutral items, and items rated more similar in terms of anatomy.

Table  4, Figure 6

The predictions reported here are based on computations using a semantic
neighborhood of size m = 50 and a selection of one term from that neighborhood to be
combined with the vector for each word (k = 1). Larger values of k yielded somewhat
less satisfactory predictions. The correlation between the rating differences Anatomy-
Behavior and the corresponding cosine difference were r = .62, r = .51, and r = .40 for k =
1, 3, or 5, respectively. Calculations based on a semantic neighborhood of m = 20,
however, produced poor results. Only in very few cases could something relevant to the
animal names be found in the anatomy neighborhood when only 20 terms were used.
Thus, for this choice of parameter value behavior almost completely dominated anatomy,
since even in a small neighborhood of behavior terms like eating were to be found, i.e.,
terms that are more or less relevant to all animals.

To account for the Heit & Rubenstein data, the predication model was needed;
simply computing  the cosine between two terms misses the context dependency of  these
judgments. However, similarity judgments are  not always context dependent. A
counterexample is given by Landauer & Dumais (1997), who were able to describe the
choices people make on the TOEFL test (Test of English as a Foreign Language) simply
by computing the cosine between the word to be judged and the alternatives among
which a choice had to be made.  For instance,  what is the right response for the test word
abandoned – forsake, aberration, or deviance?   The cosines between the test word and
the alternatives are .20, .09, and .09, respectively, so LSA chooses the right response.
Indeed, LSA chooses the correct alternative 64% of the time, matching the mean percent
correct choices of foreign students who are taking this test. It is easy to see why LSA
alone works so well here, but why  it must be used in conjunction with the predication
algorithm for the Heit & Rubenstein data.   The multiple choice alternatives on the
TOEFL test  do not provide a meaningful context with respect to which similarity can be
judged because they are unrelated words (in the present example, the average cosine
among the alternatives is .07), whereas in the examples discussed above, context plays a
decisive role.
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Homonyms

Predication modifies the predicate of a proposition in the context of its
argument(s). However, the arguments themselves may have multiple senses or, indeed,
multiple meanings. Homonyms are words that are spelled the same but have several
distinct meanings – not just different senses. The vector that LSA computes for a
homonym lies near both of its distinct meanings, something that is quite possible in a
high-dimensional space. An example from Landauer (in preparation) will illustrate this
point. Take the word lead. Its cosine with metal is .34 and its cosine with follow is .36;
however, the cosine between metal and follow is only .06. Lead is related to two
neighborhoods that are not related to each other. The average cosine between lead and
<metal, zinc, tin, solder, pipe> on the one hand and <follow, pull, direct, guide, harness>
is .48. But the average cosine between the words in these two distinct neighborhoods is
.06.

 If a homonym is used as an argument in one of its meanings in a sentence, do we
need to adjust its meaning contextually similarly to the way it was done for predicates?
Or does the predication procedure, which combines the vectors for the predicate and
argument, automaticallyaaccomplish the meaning selection for arguments with multiple
unrelated meanings?  The latter appears to be the case. The LSA vectors for
homonymous nouns contain all possible meanings (with biases for the more frequent
ones), and appropriate predicates select fitting meanings from this complex. Some
examples will illustrate this claim.

Figure 7

According to WordNet, mint has four meanings as a noun, one as a verb, and one
as an adjective.  Figure 7 compares three of these senses with suitable landmarks. The
sentences use the candy sense, the plant sense, and the verb sense of the homonym.  The
vector for mint is roughly equally related to the three landmarks that capture the different
meanings of the homonym, with a slight bias in favor of the candy meaning. Vectors for
these sentences were computed according to the predication procedure, and these vectors
were compared with landmarks emphasizing one of these meanings: chocolate for the
candy sense, stem for the plant sense, and money for the verb sense. Of course, once an
argument is embedded in its sentence context, it is not possible to extract a separate
vector for the argument; rather, the resulting vector represents the whole sentence.
Figure 7 shows that these sentence vectors have become very specific: they are strongly
related to the appropriate landmarks, but only a little or not at all related to the
inappropriate landmarks.  However, the vectors for all three  sentences  remains related to
the word mint. That is, mint still plays an important role in the sentence, not just the other
two context words (cosines between mint and the three sentences are .40, .27, and .38,
respectively, for the candy, plant and coins sentence).

The mint-example comes, in somewhat different form, from a priming experiment
by Till, Mross, & Kintsch (1988), where it was the first item in their list of experimental
materials. We also analyzed  the next five of their examples  with the predication
procedure.  For each homonym noun, two different disambiguating phrases were
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constructed, using as predicates words from the definitions given in WordNet. Thus, for
the homonym pupil, the phrases used were pupil in school and pupil of the eye. These
brief contexts were clearly sufficient to determine the meaning of the homonym for
educated adults. Would they suffice also for LSA? For each phrase a vector was
computed with the predication procedure as explained above (m = 50, k = 3). This vector
was then compared to landmarks also selected from WordNet – the category names to
which each meaning was assigned in WordNet5. The following test list of homonyms and
landmarks was thus obtained: ball/game-shot; bit/stable gear-pieces; pupil/learner-
opening; dates/day-fruit; foil/sheet-sword. Thus, 10 comparisons could be made. In 9
cases, the cosine between the phrase vector and the appropriate landmark was higher than
the cosine between the phrase and the inappropriate landmark. The average cosine value
for appropriate landmarks was .37, compared with .16 for inappropriate landmarks. The
one failure that was observed was for the phrase fencing foil – the General Reading Space
does not know the fencing meaning of foil (the two words have a cosine of -.04). Note
that this indicates a lack of knowledge – not necessarily a failure of the predication
algorithm.

Thus, it appears that the predication procedure is sufficient to contextualize
words that have different meanings, in the same way as it handles words that have
different senses. At least that is a reasonable hypothesis,  pending further research.
Gentner and France (1988) performed a series of experiments to investigate the
comprehension of sentences in which the noun and verb were mismatched to make the
interpretation of the sentence difficult. They concluded that under  these conditions
”verbs adjust to the nouns rather than the other way around.” Their results provide some
support for the kind of model considered here.

Discussion

LSA-Semantics. LSA is a new theory of word meaning.  It is a theory that has
considerable advantages over other approaches to lexical semantics, starting with the fact
that it is a completely explicit mathematical formalism that does not depend on human
intervention.  It has also been strikingly successful in practical applications and has
provided a solution to one of the toughest previously unresolved puzzles in the
psychology of language - to explain the astonishing rate of vocabulary acquisition in
children (Landauer & Dumais, 1997). Nevertheless, not everyone has been willing to take
LSA seriously as the basis for a semantic theory. Too many of the traditional concerns of
semantics have been outside the scope of LSA. The predication algorithm that is
proposed in the present paper rectifies this situation to some extent. By combining LSA
with the construction-integration model LSA can be made to account for the way in
which syntax modifies meaning, at least for some simple, basic cases. At this point, it is
not clear where the limits of the predication model are in this respect. However, even if
the proposed approach eventually yields a full and satisfactory account of predication,
other fundamental semantic problems remain for LSA, for example, concerning the
classification and distinction among such semantic relations as hypernymy and
hyponymy, meronymy, antonymy and so on.
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Even though LSA is still only incomplete as a semantic theory, it nevertheless
provides an interesting and promising alternative to the dominant conceptions of lexical
semantics. Providing a computational model of how the syntactic and semantic context
can modify and shape word meanings makes it possible to think about a lexicon in which
word senses do not have to be distinguished. Words in LSA are represented by a single
vector in a high-dimensional semantic space, however many meanings or senses they
might have. The  separate meanings and senses emerge as a result of processing a word in
its syntactic and semantic context.  They are therefore infinitely sensitive to the nuances
of that context - unlike predetermined definitions, that will never quite do justice to the
demands of complex linguistic contexts.  Kintsch (1988, 1998) has argued that such a
theory is required for discourse understanding in general; here, this argument is extended
to the mental lexicon, and made precise through the computational power of LSA.

Centroid and Predication. Centroid and Predication are two different composition
rules for an LSA semantics. The analyses reported here indicate that in some cases
predication gives intuitively more adequate results than centroid. This is clearly so for
metaphoric predicates, causal inferences, and contextually based similarity judgments,
and probably so for simple predication. But if predication is the better rule, why has the
centroid rule been so successful in many applications of LSA, such as essay grading?  It
may be the case that the only time really important differences arise between these rules
are in simple sentences out of a larger context, where specific semantic interpretations are
at issue, as with metaphoric predication or causal inference. In the context of longer
sentences or paragraphs, centroid and predication probably yield very similar results. The
more predicates that appear in a text, the more neighborhood terms are introduced, so that
their effects very likely would cancel each other. Enriching semantically a brief sentence
can make an appreciable difference, as was demonstrated above, but enriching every
phrase and sentence in a long text probably has very little effect and may get us right
back to the centroid of the terms involved.

For the fine detail, predication seems superior to centroid. But the fine detail may
not weigh very much when it comes to the meaning of a longer passage, such as an essay.
Even for short sentences, centroid and predication often give very similar results. The
vector for The hunter shot the deer computed by centroid and predication have a cosine
of .97. Nevertheless, when we compare the centroid vector with the hunter was dead and
the deer was dead, the centroid vector is much closer to the hunter being dead (cosine =.
65) than the deer being dead (cosine = .35); when the vector computed by predication is
compared with these inferences, on the other hand, it is closer to the deer was dead
(cosine=. 75) than to the hunter was dead (cosine=. 69). Centroid and predication are
almost the same for most purposes, except when we need to make certain subtle but
crucial semantic distinctions.

The Role of Syntax. The predication algorithm presupposes a syntactic analysis of
the sentence: one must know what is the predicate and what is the argument. People
obviously use syntactic information in comprehension, but LSA does not. One could
imagine how an existing or future syntactic parser could be combined with LSA to
compute the necessary syntactic information.  Ideally, one would like a mechanism that
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learns about syntactic structure in the same way as LSA learns about semantic structure,
namely, through unsupervised learning.   Such a system does not currently exist. There
are of course many efficient syntactic parsers, either hand coded or based on supervised
learning algorithms, that could be used in conjunction with LSA.  However, since only
very simple sentences are being analyzed here, little would be gained thereby at present.

Parameter Estimation. The predication algorithm has two parameters, m, the size
of the semantic neighborhood, and k, the number of items selected from the semantic
neighborhood. (The parameter m is required only because of the calculational
approximations used here – in principle one could always deal with the complete
semantic neighborhood, though not very conveniently). For similarity judgments,
especially when not very similar words are to be compared, such as bat and giraffe,
 a fairly large semantic neighborhood must be considered in predication (m = 50), but not
too much from that neighborhood becomes integrated into the judgment (k = 1). For
familiar subject-verb-object sentences, on the other hand, there is no need to work with
such a large neighborhood since relevant terms could reliably be found within a much
smaller neighborhood (m = 20). But predication had a much greater effect there than with
similarity judgments - much more information from that neighborhood appeared to be
integrated into the resulting sentence vector (the most convincing results were obtained
for k = 3 or 5). Metaphors were different again, in that a much larger neighborhood had
to be considered (m = 500), because the kind of argument relevant terms that predication
selected from the predicate neighborhood tended not to be as strongly related to the
predicate as in familiar sentences. For instance, for My Lawyer is a shark, most of the
close neighbors of shark were irrelevant to lawyer, and one had to go way down the list
to terms only moderately related to shark before finding lawyer-relevant terms for the
integration.  Furthermore, for metaphors, a threshold value (two standard deviations
above the mean for random word pairs) was used to avoid selecting noise items, a
precaution usually not necessary otherwise. However,  further work will be needed to
determine  whether the use of a threshold is justified. When predication fails, should it
fail because it cannot  construct an interpretation (the threshold model) or because it
constructs an off-the-wall interpretation (without a threshold)?

One may speculate that the way predication is instantiated in the brain is as a
parallel activation process in which all neighbors sufficiently strongly related to the
predicate are activated and tested for their relevance to the argument.  All items are
compared to both A and P, and the ones most strongly related to both are selected.  How
much of that information is then actually used in constructing the integrated sentence
vector appears to be task dependent. When fairly deep understanding is required, as in
causal inferences or metaphor understanding, quite a bit of the most relevant information
from the predicate becomes integrated with the argument. On the other hand, in a more
superficial task such as similarity judgment, less information from the predicate
neighborhood is being used.

Conclusions,  Assume that humans acquire knowledge in much the same way as
LSA does: by keeping track of the events in their environment (their external as well as
internal environment, and certainly not restricted to digitalized text) and deriving from it
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a high-dimensional semantic space by an operation like dimension reduction.  This
semantic space serves them as the basis for all cognitive processing. Often cognition
directly reflects the properties of this semantic space, as in the many cases where LSA
alone has provided good simulations of human cognitive processes. But often cognitive
processes operate on this knowledge base, thus transforming it in new ways. One such
case was explored in the present paper. Predication uses the LSA space to represent static
word knowledge, but by putting a spreading activation net on top of it, it introduces an
element of contextual modification that is characteristic of comprehension processes.
Thus, by combining a comprehension model with an LSA knowledge base, a new and
more powerful model was obtained. What we have, however, is still not a complete
model of cognition. We may conjecture that a model of analytic thinking also uses an
LSA knowledge base, but in ways as yet unknown. LSA by itself does not account for
metaphor comprehension. But LSA in combination with the construction-integration
model of comprehension, does. On the other hand, analogical reasoning, for example, is
still beyond the scope of the LSA+comprehension model. To understand an analogy
apparently requires more than finding some features in one domain that illuminate the
other domain, as in metaphor comprehension, but requires systematic mapping and
translation processes that require additional computational mechanisms than the
constraint satisfaction process underlying the construction-integration model.  Given the
promise of the predication algorithm introduced here, it seems reasonable to keep looking
for new ways to expand the use of an LSA knowledge base in modeling cognitive
processes.
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Table 1. The 20-term neighborhood of ran, with cosines and activation values for horse
and color.

neighbors
of ran

cosine
neighbor:

horse

activation
value

(horse)

cosine
neighbor:

color

activation
value

(color)
ran 0.21 0.46 0.08 0.24
jumped 0.17 0.09 0.06 0.00
yelled 0.09 0.00 0.04 0.00
stopped 0.21 0.46 0.06 0.00
went 0.16 0.00 0.07 0.09
shouted 0.16 0.00 0.07 0.46
running 0.17 0.09 0.04 0.00
hid 0.16 0.00 0.04 0.00
cried 0.14 0.00 0.05 0.00
grabbed 0.14 0.00 0.03 0.00
saw 0.19 0.28 0.07 0.09
screamed 0.11 0.00 0.05 0.00
hurry 0.11 0.00 0.08 0.24
looked 0.15 0.00 0.09 0.39
yell 0.20 0.37 0.05 0.00
came 0.21 0.46 0.08 0.24
raced 0.19 0.28 0.06 0.00
rushed 0.13 0.00 0.09 0.39
down 0.18 0.19 0.11 0.70
hopped 0.12 0.00 0.02 0.00
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Table 2. Cosines between ran,  horse ran, color ran  and two landmarks.

LANDMARKS:
ran horse ran color ran

gallop .33 .75 .29
dissolve .01 .01 .11
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Table 3. Cosines between four subject-verb-object sentences and causal inferences
computed by centroid and predication. Correct inferences are shown in boldface.

The student washed the
table

the student was clean the table was clean

centroid .70 .71
predication .62 .83

The student dropped the
glass

the student was broken the glass was broken

centroid .76 .66
predication .87 .91

The doctor drank the water the doctor was thirsty the water was thirsty
centroid .59 .86

predication .83 .78

The hunter shot the elk the hunter was dead the elk was dead
centroid .66 .54

predication .73 .70
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Table 4. Rated similarity for pairs of animal names as a function of two instructional
conditions (Anatomy and Behavior); after Heit and Rubenstein (1994). Cosines are
computed after predicating either “anatomy” or “behavior” about each animal name.

Data Data cosine cosine
Anatomy Behavior Anatomy Behavior

1 shark trout 9.56 4.88 0.67 0.48
2 hawk chicken 6.44 3.08 0.61 0.35
3 hawk robin 7.29 4.60 0.64 0.37
4 shark goldfish 5.75 3.60 0.46 0.38
5 mosquito ladybug 5.43 3.53 0.22 0.15
6 bat mouse 4.99 3.46 0.18 0.17
7 mosquito grasshopper 4.43 3.01 0.9 0.90
8 bee praying mantis 4.43 3.09 0.74 0.60
9 snake turtle 4.07 3.14 0.52 0.79

10 bee ant 5.15 4.35 0.81 0.48
11 snake lizard 6.47 5.96 0.58 0.86
12 bat giraffe 2.03 1.64 0.31 0.16
13 whale bear 3.29 3.10 0.07 0.08
14 whale tuna 5.56 5.87 0.40 0.26
15 whale rabbit 2.51 2.83 0.03 0.12
16 snake worm 4.90 5.25 0.41 0.58
17 bat sparrow 4.81 5.17 0.48 0.19
18 bee hummingbird 3.40 6.64 0.40 0.81
19 hawk tiger 2.29 5.72 0.14 0.45
20 shark wolf 2.32 6.08 0.14 0.25
21 mosquito vampire bat 3.19 7.18 0.31 0.44
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Figure 1.  A fragment of an integration network. Shown are the predicate ran and the
argument  horse, and three items from the neighborhood of ran. Solid lines
indicate positive connections among nodes; dashed lines indicate inhibitory
connections.
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Figure 2. Three sentences with the predicate collapsed compared to landmarks.
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Figure 3.Cosines between the vectors for pelican and pelican is a bird and five
landmarks.
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Figure 4. Cosines between the vectors for bird and bird is a pelican and five landmarks.
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Figure 5. My lawyer is a shark compared to landmarks.
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Figure 6. Average differences between rating data and cosines for items rated more
similar in terms of behavior, neutral items, and items rated more similar in terms
of anatomy; data after Heit and Rubenstein (1994).
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Figure 7. The relationship between three landmarks and the vectors for three sentences
expressing different senses of mint
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1 The term feature is used here in a non-technical sense.
2 I thank Murray Singer for providing me with these materials.

3 Parameter values used were k=3, m=50.
4 Similar low correlations are obtained for free-association matrices. For instance, r = .38 for the

frequency of responses to a list of words related to butterfly  (Deese, 1961) and the cosines

between the respective words.

5 In one case the category name in WordNet was unknown to LSA and in another case it

was barely familiar to LSA; the next word listed in the WordNet entry was used as a

substitute.


